If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+23x-195=0
a = 1; b = 23; c = -195;
Δ = b2-4ac
Δ = 232-4·1·(-195)
Δ = 1309
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{1309}}{2*1}=\frac{-23-\sqrt{1309}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{1309}}{2*1}=\frac{-23+\sqrt{1309}}{2} $
| 12+7.n=6+7.6n | | 7(8x-1)=-6(3x=2) | | 3t+(6-t)=4 | | 60+25x=450+10x | | 48-(-12y)=-38 | | –7b–3=–3b+5 | | 40•0.25m=25•0.45m | | 4t+5+3t=47 | | 9x-1+16x-6=180 | | -4y+2=6y-8 | | 0,1x+0,9=1 | | 2(y-3)-y=-3= | | 3x^2+7=x2+1 | | -4-5x-2x=38 | | x²+23x-195=0 | | 2,214=27(p+20) | | 8(5c-2)=10(32+4c) | | -6x-3=5x+5 | | 41=2y+16 | | 4t+99+45=180 | | 7x+4+11=85 | | -3(2x+9)=122x+9=-4 | | 32+2t=1 | | -7(4x+1)-17=5x+6(3-2x) | | -2y+11+6y=7y-17+10 | | 3(x−4)=3x−12 | | 78-2x=94-1x | | -38=-12y-48 | | 10x+25+16x-1=180 | | 5x+7=15x-33 | | 0,5x+1=8 | | 10x+25=16x-1 |